сайты - меню - вход - но­во­сти


Поиск
?


Скопировать ссылку на результаты поиска
Класс: 10 11 6 7 8 9

Всего: 37    1–20 | 21–37

Добавить в вариант

До­ка­зать, что рёбра про­из­воль­но­го тет­ра­эд­ра (тре­уголь­ной пи­ра­ми­ды) можно раз­бить не­ко­то­рым об­ра­зом на три пары так, что су­ще­ству­ет тре­уголь­ник, длины сто­рон ко­то­ро­го равны сум­мам длин рёбер тет­ра­эд­ра в этих парах.


Длины сто­рон AB, ВС, CD и DA вы­пук­ло­го че­ты­рех­уголь­ни­ка ABCD равны со­от­вет­ствен­но 5, 17, 5 и 9. Най­ди­те длину диа­го­на­ли DB, если из­вест­но, что она яв­ля­ет­ся целым чис­лом.


Одна сто­ро­на не­ко­то­ро­го тре­уголь­ни­ка в два раза боль­ше дру­гой, а пе­ри­метр этого тре­уголь­ни­ка равен 56, учет­ве­рен­ная наи­мень­шая сто­ро­на на 21 длин­нее наи­боль­шей из сто­рон. Най­ди­те сто­ро­ны этого тре­уголь­ни­ка.


Рав­но­бед­рен­ный тре­уголь­ник с углом \varphi при вер­ши­не впи­сан в рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 2 так, что эта вер­ши­на сов­па­да­ет с се­ре­ди­ной сто­ро­ны рав­но­сто­рон­не­го тре­уголь­ни­ка.

а)  Най­ди­те вы­ра­же­ние для пло­ща­ди S левая круг­лая скоб­ка \varphi пра­вая круг­лая скоб­ка этого тре­уголь­ни­ка.

б)  По­ка­жи­те, что

S левая круг­лая скоб­ка \varphi пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3 синус \varphi, зна­ме­на­тель: левая круг­лая скоб­ка 8 синус в квад­ра­те левая круг­лая скоб­ка дробь: чис­ли­тель: \varphi, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: зна­ме­на­тель: p конец дроби i6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка конец дроби .

в)  До­ка­жи­те, что S левая круг­лая скоб­ка \varphi пра­вая круг­лая скоб­ка мень­ше или равно дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 4 конец дроби .


а)  Сколь­ко кор­ней (в за­ви­си­мо­сти от a) имеет урав­не­ние  x в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка минус ax плюс 1=0?

б)  Пусть s=a_1 плюс a_2 плюс \ldots плюс a_n (a_i\geqslant минус 1). До­ка­жи­те не­ра­вен­ство

 левая круг­лая скоб­ка a_1 плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a_2 плюс 1 пра­вая круг­лая скоб­ка \ldots левая круг­лая скоб­ка a_n плюс 1 пра­вая круг­лая скоб­ка мень­ше или равно e в сте­пе­ни s .

в)  Пусть A, B, C  — ве­ли­чи­ны углов не­ко­то­ро­го ост­ро­уголь­но­го тре­уголь­ни­ка. До­ка­жи­те, что если

 тан­генс левая круг­лая скоб­ка A минус B пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка B минус C пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка C минус A пра­вая круг­лая скоб­ка =0,

то этот тре­уголь­ник  — рав­но­бед­рен­ный.

г)  Пусть f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = при­над­ле­жит t\limits_0 в сте­пе­ни x синус в сте­пе­ни левая круг­лая скоб­ка 1995 пра­вая круг­лая скоб­ка t dt. Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0.


а)  Сколь­ко кор­ней (в за­ви­си­мо­сти от a) имеет урав­не­ние

 ax в сте­пе­ни левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка плюс x минус 1=0?

б)  Пусть p=b_1b_2\ldots b_n (b_i боль­ше 0). До­ка­жи­те не­ра­вен­ство

 b_1 плюс b_2 плюс \ldots плюс b_n боль­ше или равно n плюс на­ту­раль­ный ло­га­рифм p.

в)  Пусть A, B, C  — ве­ли­чи­ны углов не­ко­то­ро­го тре­уголь­ни­ка. До­ка­жи­те, что если

 синус левая круг­лая скоб­ка A минус B пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка B минус C пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка C минус A пра­вая круг­лая скоб­ка =0,

то этот тре­уголь­ник  — рав­но­бед­рен­ный.

г)  Пусть g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = при­над­ле­жит t\limits_0 в сте­пе­ни x ко­си­нус в сте­пе­ни n tdt. Най­ди­те все n при­над­ле­жит \Bbb N, при ко­то­рых функ­ция g пе­ри­о­дич­на.


а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та конец ар­гу­мен­та =1.

б)  Числа p, q при­над­ле­жит левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка вы­би­ра­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что мно­го­член x в квад­ра­те плюс px плюс q имеет дей­стви­тель­ные корни.

в)  До­ка­жи­те, что если не су­ще­ству­ет тре­уголь­ни­ка с дли­на­ми сто­рон a, b, c, то нет и тре­уголь­ни­ка со сто­ро­на­ми an, bn, cn (n  — на­ту­раль­ное).

г)  До­ка­жи­те, что тре­уголь­ник ABC яв­ля­ет­ся пря­мо­уголь­ным тогда и толь­ко тогда, когда  ко­си­нус в квад­ра­те A плюс ко­си­нус в квад­ра­те B плюс ко­си­нус в квад­ра­те C=1.


Тип 27 № 1008
i

а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 10 минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та конец ар­гу­мен­та =2.

б)  Числа p, q при­над­ле­жит левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка вы­би­ра­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что мно­го­член px в квад­ра­те плюс qx минус 1 имеет дей­стви­тель­ные корни.

в)  До­ка­жи­те, что если a, b, c  — длины сто­рон не­ко­то­ро­го тре­уголь­ни­ка, то из от­рез­ков дли­ной \root n\of a, \root n\of b, \root n\of c также можно со­ста­вить тре­уголь­ник.

г)  Дан тре­уголь­ник ABC. До­ка­жи­те, что если  дробь: чис­ли­тель: синус в квад­ра­те A, зна­ме­на­тель: синус в квад­ра­те B конец дроби = дробь: чис­ли­тель: тан­генс A, зна­ме­на­тель: тан­генс B конец дроби , то он либо рав­но­бед­рен­ный, либо пря­мо­уголь­ный.


а)  Ре­ши­те не­ра­вен­ство x в квад­ра­те плюс \dfrac4x в квад­ра­те левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant5.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: a плюс 2 ко­си­нус 2x конец ар­гу­мен­та =a ко­си­нус x.

в)  Внут­ри угла ве­ли­чи­ной 60 гра­ду­сов с вер­ши­ной в точке A на рас­сто­я­нии 4 от нее рас­по­ло­же­на точка M. Най­ди­те рас­сто­я­ние между ос­но­ва­ни­я­ми пер­пен­ди­ку­ля­ров, опу­щен­ных из точки M на сто­ро­ны этого угла.

г)  Сколь­ко сто­рон имеет се­че­ние куба ABCDA'B'C'D' плос­ко­стью, про­хо­дя­щей через точки K при­над­ле­жит левая квад­рат­ная скоб­ка A'D' пра­вая квад­рат­ная скоб­ка , L при­над­ле­жит левая квад­рат­ная скоб­ка B'C' пра­вая квад­рат­ная скоб­ка и M при­над­ле­жит левая квад­рат­ная скоб­ка BB' пра­вая квад­рат­ная скоб­ка , ко­то­рые делят эти от­рез­ки в, со­от­вет­ствен­но, от­но­ше­ни­ях 16:9, 2:3 и 1:2 (счи­тая от вер­ши­ны, ука­зан­ной пер­вой)?


Тип 28 № 1113
i

а)  Ре­ши­те не­ра­вен­ство \dfrac4 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant\dfrac5x в квад­ра­те минус 4.

б)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: a минус 2 ко­си­нус 2x конец ар­гу­мен­та =a синус x.

в)  На сто­ро­нах угла ве­ли­чи­ной 120 гра­ду­сов с вер­ши­ной в точке A на рас­сто­я­нии 4 друг от друга лежат точки K и L. Пусть M  — точка пе­ре­се­че­ния вос­ста­нов­лен­ных в точ­ках K и L пер­пен­ди­ку­ля­ров к со­от­вет­ству­ю­щим сто­ро­нам угла. Най­ди­те рас­сто­я­ние от M до A.

г)  Сколь­ко сто­рон имеет се­че­ние куба ABCDA'B'C'D' плос­ко­стью, про­хо­дя­щей через точки K при­над­ле­жит левая квад­рат­ная скоб­ка AB пра­вая квад­рат­ная скоб­ка , L при­над­ле­жит левая квад­рат­ная скоб­ка A'B' пра­вая квад­рат­ная скоб­ка и M при­над­ле­жит левая квад­рат­ная скоб­ка C'D' пра­вая квад­рат­ная скоб­ка , ко­то­рые делят эти от­рез­ки в, со­от­вет­ствен­но, от­но­ше­ни­ях 1:4, 11:4 и 8:7 (счи­тая от вер­ши­ны, ука­зан­ной пер­вой)?


На сто­ро­нах AB и AC тре­уголь­ни­ка ABC от­ме­че­ны точки M и N со­от­вет­ствен­но, при­чем AM  =  AN. От­рез­ки CM и BN пе­ре­се­ка­ют­ся в точке O, при­чем BO  =  CO. До­ка­жи­те, что ABC рав­но­бед­рен­ный.


2.2 На опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC от­ме­ти­ли точки X и Y  — се­ре­ди­ны дуг AC и AB со­от­вет­ствен­но. От­ре­зок XY и сто­ро­на тре­уголь­ни­ка AC пе­ре­се­ка­ют­ся в точке Z. До­ка­жи­те, что |IZ| боль­ше дробь: чис­ли­тель: |AC| – |IC|, зна­ме­на­тель: 2 конец дроби .


Развернуть

1

2.1 Рас­смот­рим ост­ро­уголь­ный тре­уголь­ник ABC и его ор­то­центр H. Ока­за­лось, что точки B, O, H и C лежат на одной окруж­но­сти. До­ка­жи­те, что точка I лежит на той же окруж­но­сти.


В пря­мо­уголь­ном тре­уголь­ни­ке ABC: \angleABC=90 гра­ду­сов, AC  =  6, BC  =  4. На пря­мой BC от­ме­ча­ет­ся такая точка D (CD > BD), что \angleADC=45 гра­ду­сов. На пря­мой AD от­ме­ча­ет­ся такая точка E, что пе­ри­метр тре­уголь­ни­ка CBE  — наи­мень­ший из воз­мож­ных. Затем, на пря­мой от­ме­ча­ет­ся такая точка F, что пе­ри­метр тре­уголь­ни­ка AFE  — наи­мень­ший из воз­мож­ных. Найти CF.


Аналоги к заданию № 2993: 3004 Все


CAKD  — квад­рат со сто­ро­ной 6. На сто­ро­не CD вы­би­ра­ет­ся точка B (BD  =  2), а на пря­мой AD  — такая точка E, что пе­ри­метр тре­уголь­ни­ка BEC  — наи­мень­ший из воз­мож­ных. Затем, на пря­мой от­ме­ча­ет­ся такая точка F, что пе­ри­метр тре­уголь­ни­ка FEA  — наи­мень­ший из воз­мож­ных. Найти EF.


Аналоги к заданию № 2993: 3004 Все



Най­ди­те пло­щадь вы­пук­ло­го мно­го­уголь­ни­ка с вер­ши­на­ми в точ­ках, ко­ор­ди­на­ты (x; y) ко­то­рых яв­ля­ют­ся це­ло­чис­лен­ны­ми ре­ше­ни­я­ми урав­не­ния 13x плюс 48=13y плюс 3xy.


Аналоги к заданию № 3324: 3325 Все


Най­ди­те пло­щадь вы­пук­ло­го мно­го­уголь­ни­ка с вер­ши­на­ми в точ­ках, ко­ор­ди­на­ты (x; y) ко­то­рых яв­ля­ют­ся це­ло­чис­лен­ны­ми ре­ше­ни­я­ми урав­не­ния 13y плюс 48=13x плюс 3xy.


Аналоги к заданию № 3324: 3325 Все


На ги­по­те­ну­зе AB пря­мо­уголь­но­го тре­уголь­ни­ка ABC взяты точки X и Y таким об­ра­зом, что AX  =  AC и BY  =  BC. Ока­за­лось, что XY  =  p. Най­ди­те про­из­ве­де­ние AY умно­жить на BX.


Дан тре­уголь­ник АВС. На сто­ро­нах АВ и ВС взяты точки М и N со­от­вет­ствен­но. Из­вест­но, что пря­мые MN и AC па­рал­лель­ны и BN = 1, MN = 2, AM = 3. До­ка­жи­те, что AC боль­ше 4.


Дан не­рав­но­сто­рон­ний тре­уголь­ник со сто­ро­на­ми a, b, c. Если су­ще­ству­ет тре­уголь­ник со сто­ро­на­ми a плюс b минус c, b плюс c минус a, a плюс c минус b, то рас­смат­ри­ва­ют этот новый тре­уголь­ник и с ним про­де­лы­ва­ют ту же про­це­ду­ру (и т. д.), в про­тив­ном слу­чае про­цесс за­кан­чи­ва­ет­ся.

а)  Может ли в этом про­цес­се встре­тить­ся тре­уголь­ник, по­доб­ный ис­ход­но­му?

б)  Может ли этот про­цесс про­дол­жать­ся бес­ко­неч­но?

Всего: 37    1–20 | 21–37